| 7 | | |---|-----| | | ") | | 0 | () | | | | | | | | SECURITY CLASSIFICATION OF THIS PAGE | | | | | | |---|--------------------------------------|------------------------------|------------------------------|------------------|------------------------------------| | | MENTATE | PAGE | | | Form Approved
OMB No. 0704-0188 | | AD-A213 47 | 73 | . RESTRICTIVE | MARKINGS | | | | 2: | 5 2 | | for public | | e; distribution | | 26 DECLASSIFICATION / DOWNGRADING SCHEDU | ii Cez | unlimited | - | | e, distribution | | 4 PERFORMING ORGANIZATION REPORT NUMBE
Technical Report No. DU/DC/ | | 5 MONITORING | ORGANIZATION R | EPORT NU | MBER(S) | | 6a. NAME OF PERFORMING ORGANIZATION Department of Chemistry Duke University | 6b. OFFICE SYMBOL
(If applicable) | | ONITORING ORGA
Naval Rese | | | | 6c ADDRESS (City, State, and ZIP Code) | | 76. ADDRESS (Cit | ty, State, and ZIP (| ode) | | | Durham, NC 27706 | | 7 | Quincy Str
, VA 22217 | | | | 8a NAME OF FUNDING/SPONSORING
ORGANIZATION
Office of Naval Research | 8b. OFFICE SYMBOL
(If applicable) | 1 | instrument id
-J-1545; R& | | ON NUMBER 4135-00805 | | 8c. ADDRESS (City, State, and ZIP Code) | | 10 SOURCE OF E | UNDING NUMBER | ς | | | 800 North Quincy Street
Arlington, VA 22217-5000 | | PROGRAM
ELEMENT NO.
NR | PROJECT
NO.
053 | TASK
NO
84 | WORK UNIT
ACCESSION NO
1 | | 11 TITLE (Include Security Classification) Prep
EMe3SiCH2(H)AsGaPh2J3, A Tri
Arsenic. Isolation and X-Ra | meric Mono(Ars: | ino)Gall a ne | Containing | A Hydro | aration of
ogen Bonded to | | 12. PERSONAL AUTHOR(S) R.L. Wells, CY. Kwag, A.P. | Purdy, A.T. Mo | cPhail, and | C.G. Pitt | | | | 3a TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT Technical FROM 1989-9-26 19 | | | | | | | 16 SUPPLEMENTARY NOTATION Accepted for publication in | | | | | | | 17 COSATI CODES | 18. SUBJECT TERMS (C | | - | | | | FIELD GROUP SUB-GROUP | Cycloarsane | , Crystal st | ructure. / | î | s, Organoarsine | | With LiAIH' at -78°C afforded Me3SiCH2ASH2 (II), and reaction of II with Ph3Ga produced [Me3SiCH2(H) ASGAPh2]3 (III) which was characterized by partial elemental analysis (C and H). H NMR spectroscopy, and a cryoscopic molecular weight determination. Baced on the NMR data, [Me3SiCH2(H) ASGAMe2]3 (IV) was produced by the reaction of II with Me3Ga; however, only H2, Me4Si, (Me3SiCH2AS)5 (VI), and unreacted (Me3SiCH2)3Ga were identified after allowing the latter to react with II. Reaction of two equivalents of Me3SiCL with a mixture of II and n-BuLi (1:2 mole ratio) afforded Me3SiCH2AS(SiMe3)2 (V). The monosilylated arsine was not isolated when one equivalent of Me3SiCL was allowed to react with combined II and n-BuLi (1:1 mole ratio); rather, a mixture of II and V resulted. Attempted preparations of (Me3SiCH2ASGAPh), are described. The ring compound (Me3SiCH2AS)5 (VI) was prepared by reaction of Me3SiCH2ASCl2 with a mixture of Me3SiCL and Mg in THF. (cont.) | | | | | | | 224 NAME OF RESPONSIBLE INDIVIDUAL | | 226 TELEPHONE (I | nclude Area Code; | 22c OF | FICE SYMBOL | | Richard L. Wells | Previous editions are o | (919) 684 | | 1 | TION OF THIS PAGE | 19. The molecular structure of this cycloarsane was determined by single-crystal X-ray diffraction methods. Pale yellow crystals of **VI** belong to the monoclinic system with four molecules occupying the general positions of space group $P2_1/c(C^5_{2h})$ with cell constants: a=9.952(1), b=30.245(9), c=13.000(3) Å, $\beta=91.69(1)^\circ$, v=3911.3 Å³, z=4. | Acces | sion For | | |--------------|-----------|-------| | NTIS | GRA&I | | | DTIC | TAB | | | Unanc | ounced | | | Justi | fication_ | | | By
_Distr | ibution/ | | | | lability | Codos | | | Avail and | | | Dist | Special | / UI | | 1 | 1 | | | N., | i i | | | Ŧ . | 1 1 | | #### OFFICE OF NAVAL RESEARCH Grant NOOO14-89-J-1545 R&T Code 4135008---05 Technical Report No. DU/DC/TR-13 Preparation and Chemistry of Me₃SiCH₂AsH₂; Preparation of [Me₃SiCH₂(H)AsGaPh₂]₃, A Trimeric Mono(Arsino)Gallane Containing A Hydrogen Bonded to Arsenic. Isolation and X-Ray Crystal Structure of (Me₃SiCH₂As)₅. by R. L. Wells, C.-Y. Kwag, A. P. Purdy A. T. McPhail, and C. G. Pitt Prepared for Publication in Polyhedron Duke University Department of Chemistry Durham, NC 27706 September 26, 1989 Reproduction in whole or in part is permitted for any purpose of the United States Government This document has been approved for public release and sale; its distribution is unlimited PREPARATION AND CHEMISTRY OF Me₃SiCH₂AsH₂; PREPARATION OF [Me₃SiCH₂(H)AsGaPh₂]₃, A TRIMERIC MONO(ARSINO)GALLANE CONTAINING A HYDROGEN BONDED TO ARSENIC. ISOLATION AND X-RAY CRYSTAL STRUCTURE OF (Me₃SiCH₂As)₅. RICHARD L. WELLS*, CHONG-YUN KWAG, ANDREW P. PURDY, ANDREW T. McPHAIL, and COLIN G. PITT Department of Chemistry, Paul M. Gross Chemical Laboratory, Duke University, Durham, NC 27706, U.S.A. (Received IC August 1989; accepted // september 1989) Abstract---Reduction of Me₃SiCH₂AsCl₂ (I) with LiAlH₄ at -78 °C afforded Me₃SiCH₂AsH₂ (II), and reaction of II with Ph₃Ga [Me₃SiCH₂(H)AsGaPh₂]₃ (III) which was characterized by partial elemental analysis (C and H), ¹H NMR spectroscopy, and a cryoscopic molecular weight determination. Based on ¹H NMR data, [Me₃SiCH₂(H)AsGaMe₂]₃ (IV) was produced by the reaction of II with Me₃Ga; however, only H₂, Me₄Si, (Me₃SiCH₂As)₅ (VI), and unreacted (Me₃SiCH₂)₃Ga were identified after allowing the latter to react with II. Reaction of two equivalents of Me₃SiCl with a mixture of II and n-BuLi (1:2 mole ratio) afforded Me₃SiCH₂As(SiMe₃)₂ (V). The monosilylated arsine was not isolated when one equivalent of Me₃SiCl was allowed to react with combined II and n-BuLi (1:1 mole ratio); rather, a mixture of II and V resulted. Attempted preparations of (Me₃SiCH₂AsGaPh)_n are described. The ring compound (Me₃SiCH₂As)₅ (VI) was prepared by reaction of Me₃SiCH₂AsCl₂ with a mixture of Me₃SiCl and Mg in THF. The molecular structure of this cycloarsane was determined by single-crystal X-ray diffraction methods. Pale yellow crystais of VI belong to the monoclinic system with four molecules occupying the general positions of space group $P2_1/c(C^{5}_{2h})$ with cell constants: a = 9.952(1), b = 30.245(9), c = 13.000(3) Å, $\beta = 91.69(1)^{\circ}$, V = 3911.3 A^3 , Z = 4. ^{*}Author to whom correspondence should be addressed. In recent years, after a hiatus of approximately two decades¹, there has been a considerable amount of activity in the area of gallium-arsenic chemistry², some of which was prompted by the search for new gallium arsenide precursors. As a result, a number of new and interesting compounds have been prepared and characterized. However, to date the literature contains no reports regarding the isolation and characterization of monomeric or oligomeric compounds of the type [R(H)AsGaR'₂]_n and (RAsGaR')_n. As described by Coates and Beachley, the reactions of MeAsH₂ and PhAsH₂ with Me₃Ga gave only polymers^{1b}, whereas we found that the reaction of PhAsH₂ with (Me₃SiCH₂)Ga gave a complex mixture of products from which (PhAs)₆ and the novel cluster [(PhAsH)(R₂Ga)(PhAs)₆(RGa)₄] (R = Me₃SiCH₂) were isolated^{2a}. Here we report the preparation of Me₃SiCH₂AsCl₂ (I) and its conversion to Me₃SiCH₂AsH₂ (II). Also, the reaction of II with Ph₃Ga to prepare [Me₃SiCH₂(H)AsGaPh₂]₃ (III), as well as some other reactions, including its conversion to Me₃SiCH₂As(SiMe₃)₂ (V) are described. In addition, attempts to prepare (Me₃SiCH₂AsGaPh)_n are reported. Furthermore, we found that an attempted preparation of V from II resulted in the formation of the cycloarsane (Me₃SiCH₂As)₅, the crystal structure of which is described herein. #### **EXPERIMENTAL** #### General Information All manipulations and reactions were carried out either in Schlenk apparatus, I²R glove bags, or a Vacuum/Atmospheres HE-43 Dri Lab under an inert atmosphere (argon or nitrogen), or on a vacuum line. Quantities of volatile products were measured on a vacuum line. Deionized water was degassed prior to use. All organic solvents were distilled from sodium benzophenone ketyl under nitrogen. AsCl₃, perfluorohexane, Me₃SiCH₂Cl, and Et₂NH were purchased from Strem Chemicals Inc., Specialty Chemicals, Petrarch Systems Inc., and EM Science, respectively. LiAlH₄, n-BuLi, and Me₃Ga were obtained from Alfa Products Inc. All commercially available reagents were not further purified. The concentration of the n-BuLi was determined each time before use by titration³ with sec-BuOH in C₆H₆ using 1,10-phenanthroline as the indicator. Me₃SiCH₂MgCl was prepared in a 97% yield by a slight modification (i.e., baking the I₂ initiator and Mg metal turnings with a flame) of the literature method⁴. (Et₂N)₂AsCl⁵, PhGaCl₂⁶, Ph₂GaCl⁷, Ph₃Ga⁸, and (Me₃SiCH₂)₃Ga⁹ were also prepared by literature methods. ¹H NMR spectra were recorded on either an IBM NR-80 spectrometer (80 MHz) or a Varian XL-300 (299.943 MHz), the latter being used to obtain variable temperature spectra. ^{13}C NMR spectra were obtained on either a JEOL FX-90Q spectrometer at 22.5 MHz or a Varian XL-300 spectrometer at 75.429 MHz. All spectra were referenced to TMS using the residual protons or the carbons of the deuterated solvents as the chemical shift reference; for ^{1}H , $C_6D_5\text{H}$ δ 7.15, $C_6D_5\text{CD}_2\text{H}$ δ 2.09; for $^{13}\text{C}\{^{1}\text{H}\}$, C_6D_6 δ 128.0, $C_6D_5\text{CD}_3$ δ 20.4. All NMR tubes were flame-sealed under vacuum. A Normag 2029 apparatus was used to determine the molecular weight of III (cryscopically in cyclohexane). All melting point measurements were performed by using a Buchi 510 apparatus and flame-sealed capillaries. Elemental analyses were performed by E+R Microanalytical Laboratory, Inc., Corona, NY. #### Syntheses ### Me₃SiCH₂AsCl₂ (I) Me₃SiCH₂MgCl (249 cm³, 0.398 mol) was added dropwise with stirring to an Et₂O (300 cm³) solution of (Et₂N)₂AsCl (99.6 g, 0.391 mol) at -78 °C. An exothermic reaction occurred as the Grignard reagent was added dropwise. After stirring for 8 h at RT, the reaction mixture was hydrolyzed with a large excess of conc. HCl, and the organic layer was separated and combined with a hexane/Et₂O extract of the acid layer. Removal of solvents gave a yellow liquid (77.8 g) which was vacuum distilled to yield pure Me₃SiCH₂AsCl₂ as a colorless liquid (73.5 g, 81% yield, b.p. 30 °C/0.1-0.2 Torr). Anal. Calcd. for C₄H₁1AsCl₂Si: C, 20.62; H, 4.76; Cl, 30.43. Found: C, 20.67; H, 4.70; Cl, 30.26. ¹H NMR (C₆D₆, 80.06 MHz): δ –0.070 (s, CH₃), 1.5 (s, CH₂). ## Me₃SiCH₂AsH₂ (II) To a stirred suspension of LiAlH₄ (6.68 g, 0.176 mol) in Et₂O (250 cm³) at -78 °C was added dropwise a solution of I (20.5 g, 0.0880 mol) in Et₂O (50 cm³). After the addition was complete, the mixture was hydrolyzed with a large excess of deionized water at 0 °C. A white solid [presumably Al(OH)₃ and LiOH] was separated from the mixture by filtration and washed with Et₂O. Addition of MgSO₄ to the separated organic layer, followed by filtration and removal of the solvent from the filtrate, afforded a yellow liquid which was vacuum distilled (30-40 °C/20-50 Torr) to give impure II as a colorless liquid. Purification was achieved by trap-to-trap fractionation, with pure II (6.81 g, 47.2% yield) being retained in a trap at -63 °C. Anal. Calcd. for C₄H₁₃AsSi: C, 29.27; H, 7.98. Found: C, 29.56, 29. 41; H, 8.03, 7.92. ¹H NMR (C₆D₆, 299.944) MHz): δ -0.021 (s, CH₃), 0.301 ${}^3J_{HH}$ = 7.44 Hz (t, CH₂), 2.054 (t, AsH₂). ${}^{13}C\{{}^1H\}$ NMR (C₆D₆, 75.429 MHz): δ -5.425 (CH₂), -1.246 (CH₃). Treatment of I with LiAlH₄ at RT afforded II in lower yield (25%), as well as some (Me₃SiCH₂As)₅ (VI). ### [Me₃SiCH₂(H)AsGaPh₂]₃ (III) 1. Compound II (1.78 g, 10.8 mmol) and Ph₃Ga (3.26 g, 10.8 mmol) were combined in benzene (25 cm³) and, after stirring the mixture overnight at 55-57 °C, the solvent was stripped off, leaving a colorless sticky residue. Volatiles were then removed *in vacuo* over a 4 day period to yield III as a less sticky material. Attempts to crystallize the product from C_6H_{14} or a mixture of ligroin and C_6F_{14} were unsuccessful. M.p. measurement: the colorless III became mobile at 57-59 °C, and it started to change to light yellow at 68 °C; it became a transparent liquid at 75-77 °C. Anal. Calcd. for $C_{48}H_{66}As_3Si_3Ga_3$: C, 49.65; H, 5.73. Found: C, 51.00, 51.05; H, 5.75, 5.77. Mol wt (0.303 g in 13.97 g of cyclohexane): Calcd. 1161; Found. 1172±23. ¹H NMR (C_6D_6 , 299.944 MHz): δ -0.329, -0.332, -0.359 (3 s, CH₃), 0.768, 0.818, 0.882 $^3J_{HH}$ = 5.86, 5.88, 5.76 Hz (3 d, CH₂), 2.334, 2.451, 2.600 (3 t, AsH), 7.2-7.4 and 7.7-7.9 (m, Ph). Reaction of Ph₃Ga (0.550 g, 1.83 mmol) with an excess of II (0.324 g, 1.97 mmol) yielded the same sticky product, with all Ph₃Ga being consumed. Drying the product under high vacuum for 5 days afforded colorless sticky III (0.708 g, 100% yield; ¹H NMR spectrum same as that of an authentic sample). 2. Slow addition of *n*-BuLi (1.56 cm³, 2.34 mmol) to a stirred THF solution of II (0.384 g, 2.34 mmol) which was cooled in a -78 °C bath resulted in a slightly yellow solution. [Note: Treatment of II with n-BuLi in various solvents (hexane, ligroin, and THF) at RT, and even at 0 °C, resulted in a complex reaction mixture.] After stirring for 3 h, Ph₂GaCl (0.607 g, 2.34 mmol) was added by means of a side-arm dumper to the vessel. The bath was removed after stirring for another 3 h and the mixture was stirred for 1 h at RT, yielding a white solid (presumably LiCl). The mixture was filtered and washed with C₆H₆. Removal of solvents *in vacuo* from the filtrate afforded a yellow solid. The ¹H NMR spectrum of the latter revealed that III and an adduct of the gallium reactant [presumbly Ph₂GaCl·THF] were present. Recrystallization of the yellow solid from hexane or a mixture of ligroin and THF provided light yellow crystals of the adduct. ## [Me₃SiCH₂(H)AsGaMe₂]₃ (IV) Me₃Ga (3.42 mmol), measured on a vacuum line, was condensed into a reaction vessel containing a pentane solution of II (0.551 g, 3.36 mmol) at -196 °C. The mixture was warmed to RT and stirred for 39 h. The evolved CH₄ (3.26 mmol) was measured, and volatiles were removed *in vacuo* leaving a mixture of a colorless liquid and a very small amount of a solid. A second experiment using Me₃Ga (1.80 mmol) with an excess of II (0.307 g, 1.87 mmol) gave a colorless mixture of a liquid and solid (0.400g, 84.6% yield) and CH₄ (1.45 mmol). The ¹H NMR spectra of both mixtures showed the same type of coupling pattern as that observed in the spectrum of III. ¹H NMR (C₆D₆, 299.944 MHz): δ 0.047 (s, Me₃Si); 0.206, 0.247, 0.294 (3 s, Me₂Ga); 0.785, 0.805, 0.823 ³J_{HH} = 5.80 Hz (3 overlapping d, CH₂As); 1.697, 1.748, 1.790 (3 overlapping t, AsH). ## Reaction of Me₃SiCH₂AsH₂ (II) with (Me₃SiCH₂)₃Ga Compound II (0.25 g, 1.5 mmol) and (Me₃SiCH₂)₃Ga (0.05 g, 1.5 mmol) were transferred into a 50 cm³ bulb equipped with a Teflon stopcock and a magnetic stir bar. The bulb was attached to a vacuum line, cooled to -196 °C, and degassed. Stirring the mixture for a day at RT, followed by heating and stirring for 2 days at 51-63 °C, gave a yellow liquid, H₂ (1.2 mmol, 80% yield), and Me₄Si (0.21 mmol, 14% yield). After the liquid was transferred into a 50 cm³ flask to which a solution of the remaining liquid and pentane used for rinsing the bulb was added, a few small particles [presumably unreacted (Me₃SiCH₂)₃Ga] were removed by filtration. Removal of the pentane *in vacuo* from the filtrate afforded a yellow liquid, the ¹H NMR spectrum of which revealed that VI and (Me₃SiCH₂)₃Ga were present. The liquid residue was mixed with ligroin and perfluorohexane, and stored at -15 °C. A few months later, a crystal was isolated; its ¹H NMR spectrum showed a broad hump and many lines between δ 1.8 and -0.5. ## $Me_3SiCH_2As(SiMe_3)_2$ (V) To a stirred THF solution of II (1.171 g, 7.13 mmol) at -78 °C was slowly added *n*-BuLi (4.74 cm³, 14.26 mmol). After stirring for 3 h, Me₃SiCl (1.8 cm³, 14.28 mmol) was introduced into the mixture which turned colorless immediately after the addition. After stirring for another 3 h, the mixture was warmed to RT and stirred for 2 h. A white solid (presumably LiCl) was removed by filtration and washed with benzene. Volatiles were removed from the filtrate, and the liquid residue was distilled under vacuum to give V as a colorless liquid (1.82 g, 83% yield, b.p. 52-53 °C/0.1-0.2 Torr). Anal. Calcd. for $C_{10}H_{29}AsSi_3$: C, 38.93; H, 9.47. Found: C, 38.72, 38.95; H, 9.55, 9.62. ¹H NMR (C_6D_6 , 299.944 MHz): δ 0.177 (s, Me₃SiC), 0.254 (s, Me₃SiAs), 0.559 (s, CH₂). ¹³C{¹H} NMR (C_6D_6 , 75.429 MHz): δ -5.690 (s, CH₂), -0.322 (s, Me₃SiC), 1.415 (s, Me₃SiAs). ### Attempted Preparation of Me₃SiCH₂As(H)SiMe₃ *n*-BuLi (1.42 cm³, 4.14 mmol) was added to a THF solution of II (0.680 g, 4.14 mmol) which was cooled with a -78 °C bath. After stirring for 3 h, Me₃SiCl (0.52 cm³, 4.14 mmol) was added to the mixture. The bath was removed and the mixture was stirred for 3 h. A white solid (presumably LiCl) was separated by filtration and removal of solvents from the filtrate gave a liquid mixture of II and V (based on a ¹H NMR spectrum). Removal *in vacuo* of II from the mixture gave V (0.777 g, 61% yield). When this reaction was repeated at RT, (Me₃SiCH₂As)₅ (VI), (Me₃Si)₃As, and an unidentified black precipitate were formed. ## Attempted Preparation of (Me₃SiCH₂AsGaPh)_n - 1. Heating III at 55-62 °C for 2 days in a Dri Lab produced a light yellow solid which on further heating at 76-82 °C for 2 days turned more yellow. The 1H NMR spectrum of the yellow solid revealed that the coupling pattern of the trimer was collapsed, and a hump appeared at δ 0.5 to -0.5. Heating the yellow solid at 90-100 °C for another 2 days left the color unchanged, and a similar 1H NMR spectrum was obtained (3 peaks at δ 3.106, 0.188, 0.128; two humps at δ 1.0 to 0.8 (small), 0.5 to -0.5 (larger, broad), and a shoulder at δ 2.4 to 1.0. M.p. measurement: the yellow solid turned brownish at 170 °C, red at 190 °C, and became a liquid at 210-225 °C. Anal. Calcd. for C10H16SiAsGa: C, 38.87; H, 5.22. Found: C, 40.44, 40.30; H, 5.41, 5.35. - 2. n-BuLi (0.88 cm³, 2.67 mmol) was added with stirring to an Et₂O solution of II (0.219 g, 1.34 mmol) in a reaction vessel which was immersed in a dry ice/acetone bath. After stirring for 1 h, PhGaCl₂ (0.292 g, 1.34 mmol) was added to the mixture by means of a side-arm dumper. The bath was removed 1 h later and precipitation of a white solid (presumably LiCl) was observed. The white solid (0.10 g, 88% yield) was removed by filtration and removal *in vacuo* of solvents from the filtrate gave a light yellow sticky residue. The ¹H NMR spectrum of the residue was relatively simple showing 1 peak at δ -0.024 and two broad humps between δ 2.0 and -0.5. - 3. (a) A toluene solution of V (0.309 g, 1.00 mmol) was combined with a toluene solution of PhGaCl₂ (0.218 g, 1mmol) at -15 °C. After 18 h at -15 °C, followed by stirring for 27 h at RT, 1.36 equivalents of Me₃SiCl were formed. Heating for 13 h at 66 °C increased the amount of Me₃SiCl formed to 1.68 equivalents and afforded a colorless sticky residue. Attempts to crystallize the product from hexane or ligroin were unsuccessful. The ^{1}H NMR spectrum of the residue was similar to that of the material obtained when III was decomposed at 80 $^{\circ}C$ (2 peaks at δ 2.104 and 0.294; 3 humps at δ 3.4 to 3.0, 2.0 to 1.0, and 0.5 to -0.5. (b) After 12 h at -15 °C, a mixture similar to that described in (a) above was stirred for 4 days at RT and 1.53 equivalents of Me₃SiCl resulted. Alternating the reaction temperature between RT and -15 °C four times in 12 days, with removal of Me₃SiCl after each period, increased the total amount of Me₃SiCl formed to 1.79 equivalents. Removal of volatiles *in vacuo* afforded an off-white sticky residue. The ¹H NMR spectrum of the residue showed 2 peaks at δ 0.254 and 0.176, 3 humps at δ 2.3 to 1.1, 1.1 to 0.8, 0.5 to -0.5, and a small peak at δ 0.559. #### (Me₃SiCH₂As)₅ (VI) Compound I (15.0 g, 0.0644 mol) was slowly added to a THF solution of Me₃SiCl (120 cm³) and Mg turnings (3.14 g, 0.129 mol). The resulting mixture was refluxed for 1 h and then stirred at RT for an additional 8 h.. Removal of volatiles *in vacuo* gave a mixture of an off-white solid and a yellow liquid which was filtered and washed with pentane. Removal of solvents from the filtrate afforded crude VI as a yellow liquid. Some of the diarsine $[(Me_3SiCH_2)_2As]_2^{2b}$ was produced during the attempted purification (distillation at 100-120 °C/0.1-0.2 Torr) of the crude product; but after a week at RT, pale yellow crystals of VI formed in the yellow distillate. The crystals (3.28 g, 31.4%; m.p. 47-48 °C) were removed mechanically from the liquid. Anal. Calcd. for $C_{20}H_{55}As_5Si_5$: C, 29.63; H, 6.84. Found: C, 29.61; H, 6.67. ¹H NMR (C₆D₆, 299.944 MHz): δ 0.185, 0.213, 0.219 (3 s, CH₃); 1.662 (s, CH₂); 1.515 and 1.738 $^2J_{HH}$ = 13.63 Hz, 1.538 and 1.687 $^2J_{HH}$ = 13.55 Hz (2 AB patterns, CH₂). $^{13}C\{^{1}H\}$ NMR (C₆D₆, 75.429 MHz): δ 0.079, 0.266, 0.349 (3 s, CH₃); 8.145, 10.240, 12.736 (3 s, CH₂). The ¹H NMR spectrum of the remaining liquid showed the presence of the diarsine and VI (36%:64%, based on integral ratios). Total yield of VI: 5.53 g, 53%. ## X-Ray Crystal Structure Determination ## $(Me_3SiCH_2As)_5 (VI)$ All measurements were performed on an Enraf-Nonius CAD-4 diffractometer (Cu- $K\alpha$ radiation, $\lambda = 1.5418$ Å; incident-beam graphite monochromator; ω -2 θ scans, $\theta_{max} = 67^{\circ}$). Unit-cell parameters were derived from the diffractometer setting angles for 25 reflections (40° < θ < 55°) widely separated in reciprocal space. Lorentz, polarization, and empirical absorption corrections were applied to the data. The crystal structure was solved by direct methods. Approximate positions for the non-hydrogen atoms were obtained from an E-map. Hydrogen atoms were included at their calculated positions in the final rounds of full-matrix least-squares refinement of non-hydrogen atom positional and anisotropic temperature factor parameters. Crystallographic calculations were performed on PDP11/44 and Micro Vax II computers by use of the Enraf-Nonius Structure Determination Package incorporating the direct methods program MULTAN11/82. Neutral atom scattering factors used in the structure-factor calculations were taken from *International Tables for X-Ray Crystallography*, vol. IV, The Kynoch Press, Birmingham, England, 1974. In the full-matrix least-squares iterations, $\Sigma w\Delta^2$ [$w = 1/\sigma^2(|F_0|)$, $\Delta = (|F_0| - |F_c|)$] was minimized. Further details of data collection and refinement are in Table 1. Bond lengths, bond angles, and torsion angles are listed in Table 2. Supplementary material: atomic coordinates, thermal parameters, bond lengths and angles, and crystal data have been deposited with the Cambridge Crystallographic Data Centre. #### RESULTS AND DISCUSSION ### Syntheses and Reactions Reduction of Me₃SiCH₂AsCl₂ (I), which was prepared according to eqs. 1-3, with LiAlH₄ in Et₂O at -78 °C afforded Me₃SiCH₂AsH₂ (II) (eq. 4). In contrast, the reduction at room temperature resulted in a significantly lower yield of II, as well as some of the cycloarsane (Me₃SiCH₂As)₅ (VI). $$4Et_2NH + AsCl_3 - (Et_2N)_2AsCl + 2Et_2NHHCl$$ (1) $$(Et_2N)_2AsCl + Me_3SiCH_2MgCl \longrightarrow (Et_2N)_2AsCH_2SiMe_3 + MgCl_2$$ (2) $$(Et_2N)_2AsCH_2SiMe_3 + 4HCI \longrightarrow Me_3SiCH_2AsCl_2 + 2Et_2NH·HCI$$ (3) $$2Me_{3}SiCH_{2}AsCl_{2} + LiAlH_{4} ----- 2Me_{3}SiCH_{2}AsH_{2} + LiCl + AlCl_{3}$$ (4) (II) The reaction of primary arsine II with Ph₃Ga in benzene proceeded slowly at room temperature; however, the cleavage of a single Ga-C bond occurred quantitatively at 55-57 °C, yielding benzene and [Me₃SiCH₂(H)AsGaPh₂]₃ (III). This trimer was isolated as a colorless sticky material, and it did not eliminate benzene at room temperature. Monitoring of a sample of the reaction mixture between 43 and 80 °C by ¹H NMR spectroscopy revealed that the decomposition of the single cleavage product started at 58-60 °C and was completed at 80 °C. Efforts to crystallize III were not successful, but it could be characterized on the basis of molecular weight, ¹H NMR, and analytical data. It is interesting to note that whereas III is a trimer, [(Me₃SiCH₂)₂AsGaPh₂]₂ is a dimer^{2c}. The ¹H NMR spectrum of III shows that two diastereoisomers exist depending on the disposition of As-H groups, *i.e.* axially or equatorially oriented on the (Ga-As)₃ ring. One isomer has three equivalent As-H protons, whereas the other has two equivalent As-H protons which are nonequivalent to the third As-H proton. It has been demonstrated by selective decoupling experiments that three different coupling patterns between the CH₂ protons and the As-H protons take place. In addition, reaction of Me₃SiCH₂(H)AsLi with Ph₂GaCl afforded a yellow solid which, on the basis of its ¹H NMR spectrum contains III; however, recrystallization of the yellow solid did not yield III. Reaction of II with Me₃Ga in pentane at room temperature also gave a single cleavage product which was isolated as a colorless liquid containing a small amount of solid that slowly melted/dissolved at room temperature. On the basis of its 1H NMR spectrum, we believe this product is [Me₃SiCH₂(H)AsGaMe₂]₃ (IV). The spectrum shows the same coupling pattern as that exhibited in the spectrum of III, but three peaks for the Me₃Si protons are merged into one peak. The four peaks at δ 0.774, 0.795, 0.814, and 0.832 can be explained by overlapping of three doublets. Also, the three triplets for the As-H protons are partially overlapped. After storing this single cleavage product at -15 $^{\circ}$ C for nine weeks, it was observed that one of the three peaks in the NMR spectrum for the Me₂Ga protons was split into a doublet, and another one appeared to have some splitting. Also, two additional doublets and one singlet appeared in the methylene region, while one more multiplet appeared up-field adjacent to the three As-H triplets. These observations imply that the trimer (IV) underwent the loss of CH₄. Only H₂, Me₄Si, VI, and unreacted (Me₃SiCH₂)₃Ga were identified after allowing the latter to react with II. These results compare,in part, with those obtained by us in some related earlier work using the same tri(alkyl)gallane. Thus, with PhAsH₂, the products were H₂, Me₄Si, (PhAs)₆, and the cluster [(PhAsH)(R₂Ga)(PhAs)₆(RGa)₄] (R = Me₃SiCH₂)^{2a}; and with Ph₂AsH, the products were H₂, Me₄Si, (Ph₂As)₂, and impure [Ph₂AsGa(CH₂SiMe₃)₂]_n^{2b}. On the other hand no side products were observed in the preparation of [(Me₃SiCH₂)₂AsGaPh₂]₂ from the reaction of (Me₃SiCH₂)₂AsH with Ph₃Ga.^{2c} In a one-pot synthesis, Me₃SiCH₂As(SiMe₃)₂ (V) was obtained in a high yield from II via dilithiation followed by silylation at -78 °C. In contrast, efforts to isolate the monosilylated arsine, Me₃SiCH₂As(H)SiMe₃, were unsuccessful. Thus, using a procedure similar to that used to prepare V, afforded only II and V. It is reasonable to assume that, in fact, monosilylated II was formed at low temperature but, on warming to room temperature, it underwent disproportionation. When the entire procedure was repeated at room temperature, VI, (Me₃Si)₃As, and an unidentified black precipitate were formed. Three approaches were utilized in attempts to prepare and isolate an oligomer of the type (RAsGaR')n. First, compound III was slowly heated in an effort to eliminate one mole equivalent benzene. A ¹H NMR spectrum of a sample of III which had been heated for two days at 55-62 °C revealed that the elimination had started to occur, but III was still the predominant species. On subsequent heating for two days at 76-82 °C. a yellow solid formed, and its ¹H NMR spectrum contained broad peaks indicative of a polymer or mixture of oligomers/polymers. Although a completely "satisfactory elemental analysis" (C and H) was not obtained, the data strongly support a formulation of (Me₃SiCH₂AsGaPh)_n for the yellow solid. Second, the reaction of Me₃SiCH₂AsLi₂ (prepared in situ) with PhGaCl₂ was investigated. There was also evidence in this case for the desired reaction product(s), but none was isolated in "pure" form. Third, dechlorosilylation reactions between V and PhGaCl2 were carried out. In one experiment, a total of 1.68 equivalents of Me₃SiCl were evolved, leaving a colorless sticky residue. Attempts to crystallize the latter were unsuccessful; however, its ¹H NMR spectrum compares favorably to that obtained for the 80 °C decomposition product of III. In an effort to prepare V by an alternate and more direct method, the reaction of I with a mixure of Me₃SiCl and Mg in THF was carried out. No evidence for the desired product V was obtained; rather, the reaction afforded (Me₃SiCH₂As)₅ (VI). This result conforms with the report that the reaction of t-BuAsCl₂ with Mg in THF or Et₂O yields (t-BuAs)₅, in addition to (t-BuAs)₄ and t-Bu₆As₈.¹⁰ On the other hand, t-BuP(SiMe₃)₂ has been synthesized in high yield by the reaction of Me₃SiCl with Mg and t-BuPCl₂.¹¹ In the purification of VI by distillation in vacuo, a small amount of the diarsine [(Me₃SiCH₂)₂As]₂ was formed, and a mixture of the two products was obtained as a yellow liquid. After a week, VI crystallized from the liquid at room temperature, and single crystals suitable for an X-ray diffraction study were obtained. ## Crystal Structure of (Me₃SiCH₂As)₅ (VI) An ORTEP drawing of VI is shown in Figure 1. Crystallographic data and a summary of data collection and refinement are presented in Table 1, bond lengths, bond angles, and torsion angles are in Table 2, and a comparison of corresponding lengths and angles in VI and (MeAs) $_5^{12}$ is provided in Table 3. The As-As bond lengths are not all equal, As(1)-As(2) \simeq As(2)-As(3) < As(3)-As(4) \simeq As(4)-As(5) \simeq As(5)-As(1), and their mean at 2.437 Å is slightly longer than that of 2.428 Å in (MeAs) $_5$ as is the mean As-C distance at 1.99 Å in VI vs. 1.96 Å in (MeAs) $_5$. Endocyclic torsion angles are related by an approximate C_s -symmetry axis passing through As(1) and the mid-point of the As(3)-As(4) bond, and thus the ring has an envelope-like conformation although it is clearly twisted somewhat as reflected in the distinctly non-zero value of 6.2° for the As(2)-As(3)-As(4)-As(5) torsion angle. As reflected in the values of corresponding torsion angles for VI and (MeAs) $_5$ (Table 3), the five-membered rings have similar conformations in both compounds. ## NMR Spectra of (Me₃SiCH₂As)₅ (VI) If the solid-state structure were to persist in solution, the ¹H NMR spectrum of VI would be expected to be very complex; however, it was found to be quite noncomplex. It consisted of three singlets (intensity ratio 2:1:2)¹³ [δ 0.185, 0.213, and 0.219 (CH₃)], two distinct AB patterns [δ 1.515 and 1.738, ${}^{2}J_{HH}$ = 13.63 Hz (CH₂); δ 1.538 and 1.687, $^2J_{HH} = 13.55 \text{ Hz (CH}_2)$]. The $^{13}C\{^1H\}$ NMR spectrum of VI shows three singlets each for CH₃ and CH₂ carbons, proving that three types of Me₃SiCH₂ groups are present. In the presence of a symmetry-generating torsional (restricted pseudorotational) motion proposed by Rheingold¹⁴, the symmetrical intermediate of VI would give exactly the same resonances as shown in the 1H NMR spectrum which was The steric restrictions imposed by bulky Me₃SiCH₂ groups has a obtained. dampening effect on pseudorotation 15 of the ring puckering. As a result, a limited pseudorotation responsible for a time-averaged plane of symmetry takes place. According to Rheingold, there are four possible inversional isomers for the fivemembered ring in (CICH₂As)5¹⁴. Interestingly, compound VI in the solid state has the conformation which corresponds to that isomer with the lowest internal energy. Acknowledgment--- We thank the Office of Naval Research and the Duke University Research Council for financial support. #### REFERENCES - (a) G. E.Coates, J. Graham, J. Chem. Soc. 1963, 233. (b) O. T. Beachley, G. E. Coates, J. Chem. Soc. 1965, 3241. - For example see the following. (a) R. L. Wells, A. P. Purdy, A. T. McPhail and C. G.Pitt, J. Chem. Soc., Chem. Commun. 1986, 487. (b) C. G. Pitt, A. P. Purdy, K. T. Higa and R. L. Wells, Organometallics 1986, 5, 1266. (c) R. L. Wells, A. P. Purdy, A. T. McPhail and C. G. Pitt, J. Organomet. Chem. 1986, 308 281. (d) C. G. Pitt., K. T. Higa, A. T. McPhail, and R. L. Wells, Inorg. Chem. 1986, 25, 2483. (e) A. P. Purdy, R. L. Wells, A. T. McPhail and C. G. Pitt, Organometallics 1987, 6, 2099. (f) R. L. Wells, C. G. Pitt, A. T. McPhail, A. P. Purdy, S. Shafieezad and R. B. Hallock, Chemistry of Materials 1989, 1, 4. (g) R. L. Wells, W. K. Holley, S. Shafieezad, A. T. McPhail and C. G. Pitt, Phosphorus, Sulfur and Silicon 1989, 41,15. (h) A. M. Arif, B. L. Benac, A. H. Cowley, R. Geerts, R. A. Jones, K. B. Kidd, J. M. Power and S. T. Schwab, J. Chem. Soc., Chem. Commun. 1986, 1543. (i) A. H. Cowley, B. L. Benac, J. G. Ekerdt, R. A. Jones, K. B. Kidd, J.Y. Lee and J. E. Miller, J. Am. Chem. Soc. 1988, 110, 6248. (j) E. K. Byrne, L. Parkanyi and K. H. Theopold, Science 1988, 241, 333. - 3. S. C. Watson and J. F. Eastham, J. Organomet. Chem. 1967, 9, 165. - 4. F. C. Whitmore and L. H. Sommer, J. Am. Chem. Soc. 1946, 68, 481. - 5. C. F. McBrearty, K. Irgolic and R. A. Zingaro, J. Organomet. Chem. 1968, 12, 377. - 6. P. G. Perkins, and M. E. Twentyman, J. Chem. Soc. 1965,1038. - 7. S. B. Miller and T. B. Brill, *J. Organomet. Chem.* 1979, **166**, 293. - 8. H. Gilman, and R. G. Jones, J. Am. Chem. Soc. 1940, 62, 980. - 9. O. T. Beachley and R. G. Simmons, *Inorg. Chem.* 1980, **19**, 1021. - 10. M. Baudler, and P. Bachmann, Z. Anorg. Allg. Chem. 1982, 485, 129. - 11. H. Schumann and L. Roesch, Chem. Ber. 1974, 107, 854. - 12. J. H. Burns and J. Waser, J. Am. Chem. Soc. 1957, 79, 859. - 13. E. J. Wells, R. C. Ferguson, J. G. Hallet and L. K. Peterson, *Can. J. Chem.* 1968, 46, 2733. - 14. A. L. Rheingold, J. Organomet. Chem. 1975, 102, 445. - 15. P. S. Elms, S. Middleton and B. O. West, Aust. J. Chem. 1970, 23, 1559. Table 1. Crystallographic data and summary of data collection and refinement^a for (Me₃SiCH₂As)₅ (VI) | Formula | C ₂₀ H ₅₅ As ₅ Si ₅ | |-------------------------------------------------|-----------------------------------------------------------------| | Formula weight | 810.70 | | Crystal system | Monoclinic | | Space group | $P2_{1/c}(C^{5}_{2h})$ | | Conditions | 0k0, k = 2n; h0l, l = 2n | | Crystal dimensins, mm | $0.20 \times 0.30 \times 0.30$ | | Crystal color and habit | Pale yellow prisms | | Temperature, K | 298 | | a, Å | 9.952(1) | | b, Å | 30.245(9) | | <i>c</i> , Å | 13.000(3) | | β, deg | 91.69(1) | | Z | 4 | | V, Å3 | 3911.3 | | d calcd, g cm ⁻³ | 1.377 | | Linear absorption coefficient, cm ⁻¹ | 65.5 | | Scan speed, deg min ⁻¹ | Variable | | Scan width, deg | 1.20 + 0.14tanθ | | Max θ, deg | 67 | | Background | 25% additional scan | | | at each end of scan | | Range of absorbance factors | 0.48-1.00 | | Octants | +h, +k, ±1 | | Number of variables | 272 | | Data/variable ratio | 13.8 | | Check reflections | (1, 4, 2), (1, 4, 2) | | Decay of standards | < 1% | | Number of reflections collected | 7226 | | R(merge) | 0.033 on I, 0.024 on Fo | | Number of unique data | 6919 | | Number of data used in refinement | $3744 [l > 3.0\sigma(l)]$ | # Table 1. (continued) | R(F) | 0.037 | |-------------------------------------------|--------------------------------------| | R _W (F) | 0.049 | | Extinction coefficient | 9.5 x 10 ⁻⁸ | | Weighting scheme, ω | 1/σ ² (F ₀) | | E. s. d. of an observation of unit weight | 1.22 | | Largest Δ/σ | 0.06 | | Largest feature of final diff map, e Å-3 | 0.53 | | Location of feature | 1.4 Å from As(3) and As(4) | $^{^{}a}$ R = $\Sigma ||F_{o}| - |F_{c}||/\Sigma ||F_{o}||$ and R_W = $[\Sigma w(|F_{o}| - |F_{c}|)^{2}/\Sigma w|F_{o}|^{2}]^{1/2}$ with weighting scheme as listed above. Table 2. Bond Lengths (Å), bond angles (deg), and torsion angles (Å), with estimated standard deviations in parentheses, for (Me₃SiCH₂As)₅ (VI) | (a) Bond Lengths | | | | |-------------------|-----------|-------------------|-----------| | As(1)-As(2) | 2.428(1) | Si(2)-C(22) | 1.847(13) | | As(1)-As(5) | 2.443(1) | Si(2)-C(23) | 1.867(13) | | As(1)-C(11) | 1.992(6) | Si(2)-C(24) | 1.866(12) | | As(2)-As(3) | 2.424(1) | Si(3)-C(31) | 1.870(6) | | As(2)-C(21) | 1.987(7) | Si(3)-C(32) | 1.871(10) | | As(3)-As(4) | 2.443(1) | Si(3)-C(33) | 1.857(10) | | As(3)-C(31) | 2.014(7) | Si(3)-C(34) | 1.865(11) | | As(4)-As(5) | 2.446(1) | Si(4)-C(41) | 1.861(9) | | As(4)-C(41) | 1.978(8) | Si(4)-C(42) | 1.855(10) | | As(5)-C(51) | 1.995(7) | Si(4)-C(43) | 1.840(13) | | Si(1)-C(11) | 1.861(7) | Si(4)-C(44) | 1.853(11) | | Si(1)-C(12) | 1.847(11) | Si(5)-C(51) | 1.889(8) | | Si(1)-C(13) | 1.849(11) | Si(5)-C(52) | 1.865(12) | | Si(1)-C(14) | 1.876(10) | Si(5)-C(53) | 1.873(11) | | Si(2)-C(21) | 1.867(8) | Si(5)-C(54) | 1.864(12) | | (b) Bond Angles | | | | | As(2)-As(1)-As(5) | 99.05(4) | C(22)-Si(2)-C(24) | 109.1(6) | | As(2)-As(1)-C(11) | 97.2(2) | C(23)-Si(2)-C(24) | 105.8(5) | | As(5)-As(1)-C(11) | 99.4(2) | C(31)-Si(3)-C(32) | 111.6(4) | | As(1)-As(2)-As(3) | 96.46(4) | C(31)-Si(3)-C(33) | 110.3(4) | | As(1)-As(2)-C(21) | 104.3(2) | C(31)-Si(3)-C(34) | 106.4(4) | | As(3)-As(2)-C(21) | 101.2(2) | C(32)-Si(3)-C(33) | 107.3(5) | Table 2. (continued) | As(2)-As(3)-As(4 |) 105.24(4) | C(32)-Si(3)-C(34) | 109.7(5) | |------------------|--------------------|---------------------------|-----------| | As(2)-As(3)-C(31 | 94.3(2) | C(33)-Si(3)-C(34) | 111.6(5) | | As(4)-As(3)-C(31 | 98.6(2) | C(41)-Si(4)-C(42) | 111.2(4) | | As(3)-As(4)-As(5 | 104.59(4) | C(41)-Si(4)-C(43) | 108.6(5) | | As(3)-As(4)-C(41 | 96.9(2) | C(41)-Si(4)-C(44) | 108.7(5) | | As(5)-As(4)-C(41 | 96.9(3) | C(42)-Si(4)-C(43) | 108.8(5) | | As(1)-As(5)-As(4 | 98.29(4) | C(42)-Si(4)-C(44) | 108.9(5) | | As(1)-As(5)-C(51 | 96.8(2) | C(43)-Si(4)-C(44) | 110.7(5) | | As(4)-As(5)-C(5) | 95.9(2) | C(51)-Si(5)-C(52) | 109.6(4) | | C(11)-Si(1)-C(12 | 2) 110.7(5) | C(51)-Si(5)-C(53) | 107.1(4) | | C(11)-Si(1)-C(13 | 3) 110.4(4) | C(51)-Si(5)-C(54) | 111.9(4) | | C(11)-Si(1)-C(1 | 4) 107.1(4) | C(52)-Si(5)-C(53) | 109.0(6) | | C(12)-Si(1)-C(1 | 3) 109.2(5) | C(52)-Si(5)-C(54) | 110.2(5) | | C(12)-Si(1)-C(1 | 4) 108.7(5) | C(53)-Si(5)-C(54) | 109.1(5) | | C(13)-Si(1)-C(1 | 4) 110.8(5) | As(1)-C(11)-Si(1) | 116.1(3) | | C(21)-Si(2)-C(2 | 2) 109.1(5) | As(2)-C(21)-Si(2) | 115.3(4) | | C(21)-Si(2)-C(2 | 3) 112.3(4) | As(3)-C(31)-Si(3) | 114.0(4) | | C(21)-Si(2)-C(2 | 111.3(4) | As(4)-C(41)-Si(4) | 116.6(5) | | C(22)-Si(2)-C(2 | 3) 109.0(8) | As(5)-C(51)-Si(5) | 112.3(3) | | (c) Torsion An | gles <u>a</u> | | | | As(5)-As(1)-As(| (2)-As(3) 57.91(4) | As(3)-As(4)-As(5)-C(51) | 126.8(2) | | As(5)-As(1)-As(| (2)-C(21) -45.4(2) | C(41)-As(4)-As(5)-As(1) | 128.1(2) | | C(11)-As(1)-As(| (2)-As(3) 158.7(2) | C(41)-As(4)-As(5)-C(51) | -134.1(3) | | C(11)-As(1)-As(| (2)-C(21) 55.4(3) | As(3)-As(4)-C(41)-Si(4) | -92.7(4) | | As(2)-As(1)-As | (5)-As(4) -54.46(4 |) As(5)-As(4)-C(41)-Si(4) | 161.6(4) | | | | | | Table 2. (continued) | As(2)-As(1)-As(5)-C(51) | -151.4(2) | As(1)-As(5)-C(51)-Si(5) | -169.3(3) | |-------------------------|-----------|-------------------------|-----------| | C(11)-As(1)-As(5)-As(4) | -153.4(2) | As(4)-As(5)-C(51)-Si(5) | 91.6(3) | | C(11)-As(1)-As(5)-C(51) | 109.7(3) | C(12)-Si(1)-C(11)-As(1) | 79.3(5) | | As(2)-As(1)-C(11)-Si(1) | 174.3(4) | C(13)-Si(1)-C(11)-As(1) | -41.8(6) | | As(5)-As(1)-C(11)-Si(1) | -85.3(4) | C(14)-Si(1)-C(11)-As(1) | -162.4(5) | | As(1)-As(2)-As(3)-As(4) | -38.89(4) | C(22)-Si(2)-C(21)-As(2) | 150.0(7) | | As(1)-As(2)-As(3)-C(31) | 61.2(2) | C(23)-Si(2)-C(21)-As(2) | 29.0(7) | | C(21)-As(2)-As(3)-As(4) | 67.1(2) | C(24)-Si(2)-C(21)-As(2) | -89.5(6) | | C(21)-As(2)-As(3)-C(31) | 167.2(3) | C(32)-Si(3)-C(31)-As(3) | 70.0(6) | | As(1)-As(2)-C(21)-Si(2) | 178.3(3) | C(33)-Si(3)-C(31)-As(3) | -49.2(5) | | As(3)-As(2)-C(21)-Si(2) | 78.6(4) | C(34)-Si(3)-C(31)-As(3) | -170.4(5) | | As(2)-As(3)-As(4)-As(5) | 6.16(5) | C(42)-Si(4)-C(41)-As(4) | 45.8(6) | | As(2)-As(3)-As(4)-C(41) | -92.9(3) | C(43)-Si(4)-C(41)-As(4) | 165.5(5) | | C(31)-As(3)-As(4)-As(5) | -90.7(2) | C(44)-Si(4)-C(41)-As(4) | -74.1(6) | | C(31)-As(3)-As(4)-C(41) | 170.3(3) | C(52)-Si(5)-C(51)-As(5) | 58.5(5) | | As(2)-As(3)-C(31)-Si(3) | 160.3(3) | C(53)-Si(5)-C(51)-As(5) | 176.5(4) | | As(4)-As(3)-C(31)-Si(3) | -93.6(3) | C(54)-Si(5)-C(51)-As(5) | -64.0(5) | | As(3)-As(4)-As(5)-As(1) | 29.05(4) | | | $\frac{a}{a}$ The torsion angle A-B-C-D is defined as positive if, when viewed along the B-C bond, atom A must be rotated clockwise to eclipse atom D. Table 3. Comparison of bond lengths (Å) and angles (deg) in (MeAs)₅^a and (MeSiCH₂As)₅ (VI) | | (MeAs) ₅ | [Me ₃ SiCH ₂ As] ₅ | |-------------------------|--------------------------|-----------------------------------------------------| | Bond lengths | | | | As(1)-As(2) | 2.422(5) | 2.428(1) | | As(1)-As(5) | 2.441(5) | 2.443(1) | | As(2)-As(3) | 2.419(5) | 2.424(1) | | As(3)-As(4) | 2.429(4) | 2.443(1) | | As(4)-As(5) | 2.430(5) | 2.446(1) | | Bond Angles | | | | As(2)-As(1)-As(5) | 100.4(2) | 99.05(4) | | As(1)-As(2)-As(3) | 97.5(2) | 96.46(4) | | As(2)-As(3)-As(4) | 105.4(2) | 105.24(4) | | As(3)-As(4)-As(5) | 105.4(2) | 104.59(4) | | As(1)-As(5)-As(4) | 100.0(2) | 98.29(4) | | Torsion Angles | | | | As(5)-As(1)-As(2)-As(3) | 54.6(2) | 57.91(4) | | As(1)-As(2)-As(3)-As(4) | -38.8(2) | -38.89(4) | | As(2)-As(3)-As(4)-As(5) | 9.1(2) | 6.16(5) | | As(3)-As(4)-As(5)-As(1) | 24 .4 <u>(</u> 2) | 29.05(4) | | As(4)-As(5)-As(1)-As(2) | -49.4(2) | -54.46(4) | ^aThe bond length and bond angle values for (MeAs)₅ were calculated using positional parameters contained in reference 12. Figure 1. ORTEP drawing of (Me₃SiCH₂As)₅ (VI); hydrogen atoms are omitted for clarity. ## DL/1113/89/1 ## TECHNICAL REPORT DISTRIBUTION LIST, GENERAL | | No.
Copies | <u>c</u> | No.
opies | |--|------------------------|--|--------------| | Office of Naval Research
Chemistry Division, Code 1113
800 North Quincy Street
Arlington, VA 22217-5000 | 3 | Dr. Ronald L. Atkins
Chemistry Division (Code 385
Naval Weapons Center
China Lake, CA 93555-6001 | 1 | | Commanding Officer Naval Weapons Support Center Attn: Dr. Bernard E. Douda Crane, IN 47522-5050 | 1 | Chief of Naval Research
Special Assistant
for Marine Corps Matters
Code 00MC
800 North Quincy Street | 1 | | Dr. Richard W. Drisko Naval Civil Engineering Laboratory | 1 | Arlington, VA 22217-5000 | | | Code L52
Port Hueneme, California 93043 | , | Dr. Bernadette Eichinger
Naval Ship Systems
Engineering Station | 1 | | Defense Technical Information Cent
Building 5, Cameron Station | | Code 053 | | | Alexandria, Virginia 22314 | <u>high</u>
quality | Philadelphia Naval Base
Philadelphia, PA 19112 | | | David Taylor Research Center
Dr. Eugene C. Fischer
Annapolis, MD 21402-5067 | 1 | Dr. Sachio Yamamoto
Naval Ocean Systems Center
Code 52
San Diego, CA 92152-5000 | 1 | | Dr. James S. Murday
Chemistry Division, Code 6100
Naval Research Laboratory
Washington, D.C. 20375-5000 | 1 | David Taylor Research Center
Dr. Harold H. Singerman
Annapolis, MD 21402-5067
ATTN: Code 283 | 1 |